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From QTL to gene: C. elegans facilitates
discoveries of the genetic mechanisms

underlying natural variation
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Although many studies have examined quantitative trait variation across many
species, only a small number of genes and thereby molecular mechanisms
have been discovered. Without these data, we can only speculate about evolu-
tionary processes that underlie trait variation. Here, we review how quantitative
and molecular genetics in the nematode Caenorhabditis elegans led to the dis-
covery and validation of 37 quantitative trait genes over the past 15 years.
Using these data, we can start to make inferences about evolution from these
quantitative trait genes, including the roles that coding versus noncoding varia-
tion, gene family expansion, common versus rare variants, pleiotropy, and epis-
tasis play in trait variation across this species.

Discovering the mechanisms of trait variation one gene at a time

Over the past two decades, the pace of discoveries of the genes and mechanisms underlying trait
variation has increased because of advances in whole-genome sequencing and mixed-effects
model approaches in quantitative genetics. Studies have identified the number and effects of
loci that impact diverse traits measured in livestock, crops, model species, and humans, but
only a small number of genes and molecular mechanisms have been validated in any species.
This limitation exists because it is difficult (or impossible) to experimentally validate the roles of
genes in quantitative traits in many species, despite compelling evidence for numerous candidate
genes. These data can help elucidate models for how traits change over time and the evolutionary
principles underlying these changes. Therefore, researchers interested in evolution need to iden-
tify the genes and mechanisms that cause phenotypic differences across populations. However,
most species have high levels of genetic diversity that make the mapping of many small effect loci
and validation of specific genes difficult, if not impossible [1]. Additionally, the literature is filled with
numerous examples of quantitative trait loci (QTL) (see Glossary) that have been identified but
specific genes and alleles have not been validated using precise genomic manipulations, making
inferences about the molecular mechanisms of trait variation guesses, at best. Several species
can mitigate these limitations and enable discoveries of the genes and mechanisms, contributing
significant progress towards understanding the causes of trait variation across populations.

Alittle more than a decade ago, the roundworm nematode Caenorhabditis elegans emerged as a
powerhouse for the discovery of genes and variants that underlie quantitative trait variation [2]. As
of the writing of this review, 37 quantitative trait genes (QTGs) have been discovered and val-
idated using precise genomic edits in defined genetic backgrounds. From that significant list, re-
searchers have gone even further to define 24 quantitative trait variants (QTVs), elucidating
the molecular mechanisms of quantitative trait variation (Table 1, Key table, Figure 1, Key figure,
and Table S1 in the supplemental information online). Genetic experiments testing the role of a
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Innovations in quantitative trait loci map-
ping and genome editing have led to
the discovery and validation of 37
genes and variants underlying pheno-
typic variation in C. elegans.
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elegans a formidable model to under-
stand quantitative trait variation.

Most of the identified quantitative trait
genes have paralogs, providing evidence
that gene duplication events are impor-
tant for shaping quantitative traits.
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C. elegans quantitative trait genes.
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Key table

Table 1. List of QTGs and QTVs discovered in C. elegans®

Phenotype
Natural wild isolate alleles

Genetic perturbation (vulval induction,
gene expression)

PolyQ aggregation
Drug response (albendazole)

Drug response (arsenic trioxide)

Orsay virus sensitivity
Dauer formation
Aggregation; bordering

Drug response (abamectin);
pathogen response (Streptomyces
avermitilis)

Drug response (proprionate)

Matricidal hatching
Male tail morphology
Embryonic lethality

Nictation
Male-male plugging behavior

Copulatory plugging; embryonic
lethality

Telomere length
RNAI sensitivity
Competitive fitness

Drug response (amsacrine,
bleomycin, bortezomib, carmustine,
cisplatin, etoposide, puromycin,
silver); gene expression

Temperature-induced sterility

Drug response (zinc)

Pheromone response (dauer
formation)

Pheromone sensitivity

Drug response (abamectin); stress
resistance (H202); fitness; gene
expression

Embryonic lethality

Drug response (etoposide,
amsacrine)

Temperature response (body size)

Food foraging response

Mapping type

Linkage mapping

Linkage mapping
Association mapping

Association mapping;
linkage mapping

Association mapping
Linkage mapping
Linkage mapping

Association mapping;
linkage mapping

Association mapping

Linkage mapping
Linkage mapping
Linkage mapping

Linkage mapping
Linkage mapping
Linkage mapping

Association mapping
BSA,; linkage mapping
BSA

Linkage mapping

BSA; linkage mapping

Association mapping;
linkage mapping

Association mapping

Linkage mapping
BSA

BSA

Association mapping;
linkage mapping

Linkage mapping
Linkage mapping
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QTG

amx-2

atg-5
ben-1
abt-1

drh-1
eak-3
exp-1
gle-1

pot-2
ppw-1
rcan-1

scb-1

set-24
sqst-5

srg-37
Srx-43

sti-1

sup-35
pha-1

top-2

tra-3
tyra-3

Qrv

NA

NA
NA
C78S

Deletion
Deletion
NA

Deletion

G19stop;
F19fs

VB630L
C38F

Deletion

NA
V278D

TE
insertion

NA
NA
CNV
NA

Deletion

Deletion

Deletion

NA

NA

NA

Q797M

Fo6L
NA

Refs

[50,51]

[150]
[70]
[76]

[101]
[41]
[90]
[8,65]

[74]

[100]
[47,48]
[113]

(93]
[92]
[96]

[108]
[108,104]
[99]
[67,68]

(20]
[6]

(39]

(86]

(73]

(98]

[79]

(38]
(81]
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Glossary

Broad-sense heritability: the total
fraction of trait variation explained by
genetic variation in a test population.
Bulk-segregant analysis (BSA): a
QTL mapping method in which pools of
recombinant individuals are whole-
genome sequenced after phenotypic
selection to identify loci using allele
frequency skews.

Epistasis: interactions between alleles
that cause phenotypic effects greater
than observed for the individual alleles
alone.

Expression QTL (eQTL): transcript
abundances are quantitative traits that
can be mapped in recombinant or
natural populations. These QTL can be
divided into two types by whether the
physical position gene in the expression
trait is nearby (local) or far away (distant)
from the QTL position.

Genome-wide association (GWA)
mapping: a quantitative trait mapping
method where genetic markers
segregating across a wild population are
correlated with phenotypic variation in
that same population.

Genetic causality: experimental
determination of a direct role between a
genetic difference and a phenotypic
difference.

Haplotype: a genomic region with
linked allelic variation.

Isotype: a collection of wild strains
(typically from the same geographic
location) that share greater than 99.97%
of their genetic variants.

Linkage mapping: a quantitative trait
mapping method where genetic
markers segregating across a
recombinant line panel are correlated
with phenotypic variation in that same
panel.

Mediation analysis: determination of a
role of an intermediate variable
(mediator) in a direct effect process
(e.g., the mediating role of gene
expression variation in the direct effect of
genetic variation on phenotypic variation
in a different trait).

Multi-parent recombinant inbred
lines (mpRIL): a collection of
homozygous strains generated after
inbreeding recombinants from a cross
between more than two genetically
divergent parent strains. Can be used for
linkage mapping.

Narrow-sense heritability: the
fraction of trait variation explained by
additive genetic variation in a test
population.
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Table 1. (continued)

Phenotype Mapping type QTG QTVv Refs

Laboratory-adapted alleles

Genetic perturbation (movement); Linkage mapping col-182 Deletion [49]

body size

Oxygen sensing; oxygen response Linkage mapping glb-5 Insertion [84,85]

Vulval induction Linkage mapping nath-10  1746M [37]

Clumping; pathogen avoidance Linkage mapping npr-1 V215F [17,63,64,84,85,94]

(Pseudomonas aeruginosa,

Staphylococcus aureus); pathogen

response (Bacillus thuringiensis);

fecundity; body size; oxygen

response

Reproductive timing; lifespan; dauer Linkage mapping nurf-1 Deletion [18,19]

formation; growth rate; fecundity

Competitive fitness BSA rcan-1 CNV [95]

Dauer formation Linkage mapping scd-2 G985R; [43]

G1174E

Dauer formation Linkage mapping srg-36 Deletion [44]

srg-37

@Abbreviations: BSA, bulk-segregant analysis; CNV, copy number variation; NA, not available; QTG, quantitative trait genes;
QTV, quantitative trait variants; TE, transposable elements.

gene in a quantitative trait must be performed to make this connection from phenotypic varia-
tionto a QTG. The C. elegans hermaphroditic mating system and selfing lifestyle facilitate these
types of experiments because genome-wide variation is relatively low and homozygous strains
are easy to construct. Additionally, C. elegans are easily grown in the laboratory and have a
compact and defined genome in contrast to most other metazoan species. Importantly, recent
advances in CRISPR-Cas9 genome editing enabled the creation of edits to specific genomic
sites [3]. These edited strains are often paired with sensitive high-throughput assays to mea-
sure subtle effects on phenotype [4-6], making genetic causality definable in a metazoan
model. Beyond genome editing, other methods are made easier by selfing and further enable
rapid gene identification and testing, including fine mapping the phenotypic variation using ad-
ditional genetic markers and narrowing mapped intervals using near-isogenic lines (NILs).
Recent discoveries of the species origins, the structure of the genome, and inferences of its
natural niche [7—10] have set the context to help understand how evolution has shaped this
species. The confluence of these advantages have brought C. elegans to the forefront of
quantitative genetics.

The C. elegans community has identified numerous QTL (Table 1, and Table S1 in the supple-
mental information online) that underlie life history traits such as reproduction [5,11-21], lifespan
and aging [18,22-36], body size and development [5,12-15,17,18,21,27,32,37-49], and abun-
dances of gene transcripts [24,50-59)], proteins [60], and metabolites [61]. Behavioral traits stud-
ied include pathogen responses [17,62-65], stress responses [4-6,14,34,36,55,56,65-80],
responses to environmental perturbations, such as food [26,81-83], oxygen [84,85],
pheromones [39,44,86], and temperature [12,13,31,38,46,52,56,87-89], and other nematode
behaviors [23,90-107]. In addition to these traits, genomic features such as telomere length
[108] and transposable elements [109] as well as geographical [8,110] and climate variables
[110] have been used as quantitative traits for QTL mapping. In this review, we will focus on
how the strains and methods of C. elegans quantitative genetics have defined 37 genes that
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Near-isogenic line (NIL): a strain that
harbors a region of the genomes from
one genetic background in the presence
of a different genetic background.
Pleiotropy: the effect of a single allele
on multiple distinct traits.

Quantitative trait gene (QTG): a gene
in which genetic variation has been
shown to directly impact phenotypic
variation.

Quantitative trait locus (QTL): a
genomic interval in which genetic
variation has been shown to be
correlated with phenotypic variation.
Quantitative trait variant (QTV): a
variant (e.g., single-nucleotide or
insertion-deletion variant) that has been
shown to directly impact phenotypic
variation.

Recombinant inbred lines (RILs): a
collection of homozygous strains
generated after inbreeding
recombinants from a cross between two
or more genetically divergent parent
strains. Can be used for linkage
mapping.

Recombinant inbred advanced
intercross lines (RIAILSs): a collection
of homozygous strains generated after
inbreeding recombinants from a cross
between two or more genetically
divergent parent strains. Unlike
recombinant inbred lines, they have
undergone additional rounds of crossing
before inbreeding to increase
recombination breakpoints and
mapping resolution. Can be used for
linkage mapping.
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Key figure
Overview of quantitative trait gene (QTG) chromosome positions
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Figure 1. The colors represent the mapping technique(s) that were used for quantitative trait loci (QTL) mapping: bulk-
segregant analysis (BSA) (orange); linkage mapping (pink); genome-wide association (GWA) mapping (green); linkage and
GWA mapping (purple). The genes in italics represent the QTGs and genes in bold italics represent the QTVs. *opw-1 was
also mapped using linkage mapping [104]. **set-24 was detected by combining linkage mapping and BSA [20]. **The
role of piRNAs was tested using a prg-1 deletion [93]. ***srg-37 was also mapped using GWA mapping [39]. Figure was
created using ggplot2 in R.

underlie quantitative trait variation and how these data can answer fundamental questions about
evolution at the molecular level.

Innovations in linkage mapping drive the discovery of genes and variants
Quantitative genetics mappings use three complementary approaches: linkage mapping, bulk-
segregant analysis (BSA), and genome-wide association (GWA) mapping. Although BSA
has been shown to be a fast, powerful, and effective tool to identify QTL [20,49,73,95,98], linkage
mapping is the most popular method for the detection of QTL in C. elegans. In this approach,
investigators leverage statistical power to detect QTL using a large number of recombinant lines
generated from a cross between two or more phenotypically and genotypically diverse strains.

In the past 10 years, 59 linkage mapping studies discovered 22 genes underlying differences in
one or more quantitative traits (Table 1 and Figure 1). Many of the underlying datasets are avail-
able using WormQTL2' [111]. The rapid accumulation of QTGs over the past 10 years highlights
the growth in the C. elegans quantitative genetics field and the application of genome-editing
technologies. Many QTGs were discovered using three recombinant panels derived from the lab-
oratory-adapted Bristol strain, N2, and the genetically diverse Hawaiian strain, CB4856 [5,52,91].
The first panel of 80 recombinant inbred lines (RILs) was generated in 2006 [52], which led to
the discovery of the first C. elegans QTG [38]. A few years later, a second panel of 239
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recombinant inbred advanced intercross lines (RIAILs) was created; this intercrossing
scheme created more recombination events and thereby enhanced mapping resolution
[91,112]. However, after the generation of this RIAIL panel, researchers discovered that many
of these lines contain the N2 allele at the peel-1 zeel-1 incompatibility locus on chromosome |
[113,114]. Additionally, multiple studies found that the laboratory-derived N2 alleles of the
genes npr-1, glb-5, nath-10, and col-182 have strong pleiotropic effects (Box 1) [49,115]. To
reduce the effects of the genetic incompatibility between the N2 and CB4856 strains and the
large pleiotropic effect of the N2 npr-1 allele, Andersen and colleagues generated a second
RIAIL panel in which all 359 lines harbor the natural npr-17 allele (from CB4856) and a transposon
insertion into the peel-1 gene [5]. Besides these RIL and RIAIL panels, a number of NIL panels
were constructed using the N2 and CB4856 strains as parental lines [23,88,102] and used to
map QTL [22,23,45,46,56,63,88,90]. QTL can be validated and fine mapped using NILs, and ge-
netic causality can be tested using CRISPR-Cas9 genome editing of candidate genes (Box 2).
Together, all of these N2xCB4856 panels led to the discovery of 16 QTGs [6,17,38,49,63—
65,67,68,75,76,81,84,85,90,93,96,104,113] that underlie traits such as toxin responses
[6,65,67,68,75,76], nictation [93], and RNAI sensitivity [103,104] (Table 1 and Figure 1).

Other strains have also been used to generate RIL panels to investigate natural variation that can be
independent of the N2 and CB4856 variation [14,20,36,37,42,44,86,92] (Table 2). These panels
were often made from strains that are divergent in a particular trait, and have led to the discovery
of the role of nath-70 in vulval induction [37], plep-1 in plugging behavior [92], srx-43 and srx-44
in pheromone sensitivity [86], and set-24 in temperature-induced sterility [20]. Additionally, cus-
tom-made recombinant panels can harbor a particular mutation in a genetic background, allowing
for the identification of modifier loci (Box 3) [37,50,92]. Regardless of the strain composition, linkage
mapping continues to be an extremely powerful method for identifying QTGs in C. elegans.

An expanding wild isolate panel facilitates investigations of population-wide trait
variation

Although linkage mapping and BSA have proven invaluable tools for C. elegans quantitative ge-
neticists, the major innovation of the past decade was the introduction of GWA mapping [91].

Box 1. Laboratory-derived allele mapping

Many biologists use model organisms in laboratory experiments. Typically, once individuals are isolated from the wild, ref-
erence strains are defined and grown in the laboratory for many generations. Although laboratory environments are cre-
ated to optimize growth, this novel environment nevertheless is a strong selective force that can confound
interpretations of experiments relevant to evolutionary biologists, typically interested in natural traits. Therefore, it is useful
to identify the beneficial QTVs that are responsible for adaptation to the laboratory so that their influence can be controlled.

Additionally, these QTVs can be used to study the molecular mechanisms of adaptive evolution. In C. elegans, many of these
genetic changes can be identified because of a lucky historical accident [115]. The reference strain, N2, which is used by the
majority of C. elegans researchers, was grown in the lab for hundreds of generations over the decade before methods of
long-term cryopreservation were developed and N2 was cryopreserved. Before that time, a culture of the N2 ancestor strain
was grown independently for over five decades and eventually cryopreserved as the strain called LSJ2. Because of the self-
fertilizing reproduction mode, each of the laboratory mutations that occurred in the N2 or LSJ2 lineages were readily fixed and
can be identified by sequencing these strains. Approximately 300 variants distinguish these two strains.

These two strains were used to demonstrate that a QTV in the npr-1 gene, originally identified as a natural genetic variant
that regulates feeding behavior, arose after isolation from the wild and increased the fitness of the N2 strain in laboratory
conditions [84]. Mapping of phenotypic differences between the N2 and LSJ2 strains using a RIL panel generated be-
tween these two strains led to the identification of a number of additional beneficial QTVs in the glb-5, nurf-1, rcan-1,
srg-36, and srg-37 genes [18,44,84,95,141,148]. These QTVs affect a number of behavioral, developmental, and repro-
ductive traits, from feeding behaviors on bacterial lawns, to behavioral and developmental responses to pheromones, to
reproductive output and lifespan. This work demonstrates the immense effects laboratory growth can have on animals and
is important to consider when using laboratory strains to map natural trait differences.
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Box 2. From QTL to validated QTG or QTV

Most quantitative genetics mappings detect QTL, but progress often stops when QTL cannot be narrowed
nor validated to discover specific QTG. Although this process to determine genetic causality is not easy, several
genetic tools have enabled many C. elegans QTL to be validated at the level of QTG, and even QTV, for a variety of
quantitative traits (see Table 1 and Figure 1 in main text). Most C. elegans studies validate and narrow QTL using NILs
[4,17-20,34,36,37,40-42,44,50,61,68,65,67,69,71,74-76,81,84,86,87,90,92,93,95,100,101,104,149]. Any differ-
ences in phenotype between the NIL and the parental strain with the same genetic background can be attributed to the introgres-
sion of the QTL or the interaction of the introgression with the genetic background from the opposite genotype. If a NIL validates
the QTL effect, several approaches exist to narrow the interval to a list of candidate genes to test for genetic causality. First,
knowledge about (predicted) gene functions is commonly used to identify candidate genes [6,39,41,65,75,86,101,108]. Second,
researchers often prioritize genes with variants in the coding sequence that are predicted to have an impact on gene function
[6,18,20,37,41,65,67,70,76,92,93,98,101,150]. Finally, genes with expression variation, even if there are no variants in the
coding sequence, can be prioritized as candidate genes [6,67,68,73].

Because causal relationships between genetic variation and phenotypic variation require empirical tests of necessity and
sufficiency, specific genes or variants must be tested. Although it is tempting to use gene deletions or RNAI in the labora-
tory strain background to test for phenocopy of a quantitative trait, these techniques are biased towards the N2 strain
background and assume that loss-of-function variation has caused the trait difference. With the establishment of
CRISPR-Cas9 genome editing, gene-specific deletions can be created for quantitative complementation or reciprocal
hemizygosity tests to establish a causal QTG [6,18,67]. Alternatively, allele replacement experiments can be used to edit
a single nucleotide in any genetic background and identify a causal QTV [18,67,70,74-76,100] (see Table 1 and Figure 1in
main text).

GWA mapping takes advantage of the breadth of natural genetic diversity that exists among ge-
netically distinct individuals. Like other mapping techniques, GWA mapping aims to identify func-
tional variants that contribute to phenotypic diversity. The strength of this approach is in its ability
to leverage the breadth of phenotypic variation present across the species to identify common
QTVs. The C. elegans Natural Diversity Resource (CeNDR) [10,116] catalogues and distributes
all wild strains and genome-wide variation data. CeNDR' remains a vital resource for the
C. elegans community to facilitate GWA mappings and population genomic analyses.

Performing GWA mapping studies in C. elegans requires an understanding of the genetic com-
position of the species-wide population. Early studies to characterize the genetic variation in
C. elegans at a global scale discovered large blocks of shared haplotypes across four of the
six chromosomes, likely explained by one or more recent strong selective sweeps [8]. Extensive
linkage disequilibrium, particularly in the center of chromosomes, limits QTL resolution using
GWA mapping. Additionally, many strains are genetically similar and can be grouped into distinct
isotypes. GWA mapping analysis with several strains from the same isotype inappropriately in-
creases the effects of these nearly genetically identical strains. Large-scale collection efforts
over the past decade have led to a species-wide collection of 1378 strains comprising 540 dis-
tinct isotypes. Along with these additional strains, the catalogued genetic diversity has increased,
particularly in strains collected from the Hawaiian islands and the neighboring Pacific region
[7,10]. However this increased genetic diversity decreases linkage disequilibrium, making the lo-
calization of QTL more difficult, particularly in punctuated regions of the genome with extreme ge-
netic diversity [117].

In total, association mapping led to the discovery of nine QTGs, including seven with QTVs, that
underlie quantitative trait variation (Table 1 and Figure 1). In one such example, a natural deletion
in the pheromone receptor gene, srg-37, was found to cause variation in the dauer pheromone
response [93]. In a study of Orsay virus sensitivity, a locus in the center of chromosome IV was
linked to variation in viral load. This locus was later fine-mapped to a natural deletion in the
gene drh-1, a homolog of the mammalian RIG-/ gene family [101]. These examples, and others,
provide important insights into the pathways and molecular mechanisms that cause natural
variation across wild populations.
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Table 2. Overview of QTL mapping populations®

Genetic background Parental strains Refs

Recombinant inbred lines (RILs)

N2xBO N2xBO [28]
RC301xBO RC301xBO [35]
CB4857xBO DR1345xRW7000 [33]
N2xCB4856 N2xCB4856 [52,72]
N2xCB4853 N2xDR1350 [14]
N2xCB4856 AX613xCB4856 [85]
N2xCB4856 CB5362xCB4856 tra-2(ar221); xol-1(y9) [105]
N2xLSJ2 CX12311xLSJ2 [44]
N2xAB1 JUB05xJUB06 [37]
AB2xCB4856 QG5xQX1199 [92]
N2xCB4856 MT2124xCB4856 50]
MY14xCX12311 MY14xCX12311 [86]
N2xLSJ2 CX12311xLSJ2 [18]
MY10xJU1395 MY10xJU1395 [20]
N2xMY16 N2xMY16 [42]
JU1200xJU751 JU1200xJU751 [41]

Recombinant inbred advanced intercross lines (RIAILs)

N2xCB4856 N2xCB4856 [91,113]
N2xCB4856 QX1430xCB4856 [5]
Multi-parent recombinant inbred lines (mpRILs)

CeMEE CeMEE RILs [15]
JU1511xJU1926xJU1931xJU1941 JU1511xJU1926xJU1931xJU1941 [27]

Introgression line populations

NILs - CB4856 > N2 N2xCB4856 [23]
NILs - CB4856 > N2 QG613xQG590; QG614xQG591 [102]
CSS - CB4856 > N2 N2xCB4856 [88]
NiLs - BO > CB4857 DR1345xRW7000 [34]
Wild isolates

NA NA [10,116]

#Abbreviations: CSS, chromosome substitution strain; NA, not available; QTL, quantitative trait loci; NIL, near-isogenic line.

Although linkage mapping, BSA, and GWA mapping have each had considerable success map-
ping QTL and QTGs, each mapping approach has its drawbacks when used in isolation. In some
studies, a combination of both linkage and GWA mapping has been used to narrow genomic
intervals by analyzing QTL that overlap between methods [6,65,67,75,76]. Alternatively, multi-
parent recombinant inbred line (mpRIL) panels (Figure 2A) have become important quantita-
tive genetic tools in other model organisms such as mice [118,119], Drosophila melanogaster
[120], and Arabidopsis thaliana [121]. These populations capture genetic diversity within the spe-
cies without sacrificing the power of recombinants to detect and localize QTL. In C. elegans, two
mpRIL panels have been developed: the CeMEE and the mpRIL panel [15,27,122]. The CeMEE
panel is a 16-parent experimental evolution panel that, after crossing, was exposed to more than
100 generations of experimental evolution and subsequent inbreeding [15,122]. Alternatively, the
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Box 3. Fixed mutations in mapping panels

One of the benefits of C. elegans is the availability of a plethora of defined mutant strains (covering most of known N2 ref-
erence genome genes) from the Caenorhabditis Genetics Center [151]. These characterized mutations can be used to
create a RIL population to discover modifier loci present in genetic backgrounds different from the laboratory reference
strain (as reviewed by [152]). This strategy has been successfully applied to create populations used to identify gib-5 as
a modifier of npr-7-dependent trait differences [85], nath-70 as a modifier of vulval induction and germ line development
differences [37], amx-2 as a modifier of Ras pathway signaling differences [50], and plep-1 as a modifier of male-male
copulatory plugging differences [92].

The use of fixed mutations in different genetically diverse strains has shown that the effects of a mutation are dependent on
genetic background. This result suggests that genetic modifiers are common across different natural strains. For example,
it was shown that the AB1 strain was less sensitive to Ras pathway perturbations than the commonly used laboratory
strain N2 [153]. This trait difference was mapped to nath-10, where further validation in the N2 strain showed that a sen-
sitizing mutation alone did not affect vulval induction, but the effect could be revealed only in the presence of a receptor
tyrosine kinase let-23(sy1) mutation [37].

mpRIL panel was generated from four parental strains with genotypic and phenotypic variation
[1283] isolated in close geographic proximity [27]. In addition to simply mapping more QTL across
a variety of traits, wider adoption and generation of new mpRIL could help to address several out-
standing questions in quantitative trait variation and the evolution of diverse phenotypes.

Validated QTGs and QTVs provide insights into evolution

Each of the 37 C. elegans QTGs discovered in the past 15 years (Table 1 and Figure 1) individually
reveal molecular mechanisms for how phenotypic diversity is shaped, offering clues into how this
species has evolved. Together, this set of experimentally validated QTGs give researchers numer-
ous examples to connect quantitative trait variation to understanding evolutionary principles. The
high confidence in these QTGs ensures that any conclusions drawn from these data are not influ-
enced by false positive QTL or wishful thinking. By investigating these genes, we can begin to
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Figure 2. Powerful approaches to quickly identify the genes and molecular mechanisms underlying quantitative trait variation. (A) A schematic of a
hypothetical multi-parent recombinant cross is shown. The eight colored nematodes along the outside represent the parental strains in the cross. The genome of one
hypothetical line is shown in the center of the cross with bars to represent chromosomes colored by the genetic background retained from each parental strain. (B) A
mediation model where phenotypic variation (animal size) between strains (color) can be explained by variation in gene expression caused by a genetic variant. This
figure was created using BioRender.com.
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make suppositions about the variants most commonly underlying trait variation important for evo-
lutionary change.

Validated QTVs confer fitness advantages in specific environments

Most validated QTVs fall into two groups: common variants with small effects or rare variants with
large effects [124]. Of the 24 QTVs identified in C. elegans, 11 are common or present in more than
5% of isotypes (CeNDR, Table S1 in the supplemental information online). Of these 11 QTVs, three
were identified using GWA mapping alone, four using linkage mapping alone, and four using both
mapping methods. For example, multiple common alleles have been correlated with toxin re-
sponse differences [6,65,74-76,101]. This result suggests that these alleles have been maintained
over many generations and the predicted fithess costs of harboring such alleles are likely to be
small. The remaining 13 QTVs are rare alleles across the C. elegans population and were identified
exclusively using linkage mapping, which fits expectations about the power to detect these loci
when parent strains harbor rare variants. These rare QTVs fall into two groups: nine laboratory-
derived alleles (Box 1) and four alleles detected in wild populations. The wild rare alleles are
associated with severe detrimental effects on life-history traits. For example, males with the mab-
23(e2518) allele are unable to reproduce [47,48], and the set-24(mfP23) allele causes sterility
after prolonged exposure to 25°C [20]. It is possible that their fitness effects are only present in spe-
cific environments (e.g., the rare variant eak-3 confers fithess advantages under stressful condi-
tions by increasing dauer formation), suggesting that these alleles might have been selected in
specific environments [4 1], as illustrated by the rare laboratory-derived QTVs that confer fitness ad-
vantages in that environment (Box 4). Overall, we still need more research into the natural ecology
of C. elegans to understand how any discovered alleles or genes are influenced by selection [125].

Most validated QTGs are members of gene families

It has been hypothesized that paralogous genes or genes that are part of a functionally redundant
gene family might offer a source of variation across populations because the genes can diverge
without strongly affecting function [126]. Because of the ever-growing collection of C. elegans
strains [10,116], the rapidly increasing availability of high-quality nematode genomes [127], and re-
cent developments in evolutionary biology and comparative genomics [128], we can begin to de-
termine how often quantitative trait variation is caused by differences in gene families. Of the 37
QTGs identified in C. elegans, 27 genes had one or more paralogs (Table S1 in the supplemental
information online) [129,130], providing strong empirical data that, as genes increase in copy num-
ber, they can functionally diverge and cause trait variation. By contrast, it is estimated that about
6000 genes (or 32% of the genome) have at least one paralog [131], indicating a highly significant
enrichment of QTGs belonging to a gene family (Fisher’s exact test; P < 0.00001). This result sup-
ports the duplication-divergence model, where new genes come from copies of pre-existing genes
[132]. In one example, researchers mapped variation in propionate sensitivity to a putative glucu-
ronosyltransferase that is part of an expanded gene family specific to C. elegans [74]. Importantly,
new results show that hyper-divergent regions of the C. elegans genome contain environmental-
response genes that are genes not found in the N2 reference genome and members of C. elegans
specific expanded gene families [10]. The validated QTGs that are members of gene families sug-
gest that quantitative trait variation is likely focused in hyper-divergent regions and must be charac-
terized using long-read genome sequencing to define strain- or species-specific genes. As studies
into the natural ecology of C. elegans continue, it will be important to investigate how these ex-
panded and variable gene families contribute to fitness in the niche.

Noncoding variation is responsible for organism-level trait differences
Most known QTVs are large-effect protein-coding variants that cause phenotypic differences
(Table 1). However, noncoding variation might be more evolutionarily important [133-135].
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Box 4. Experimental evolution and QTVs

Experimental evolution uses controlled laboratory manipulations to investigate evolutionary processes. It can test the role
of selection and genetic drift on changes in allele frequencies under specific environmental conditions. C. elegans is par-
ticularly useful for experimental evolution because its short generation time (approximately 3 days) and high brood size
(greater than 200 offspring per individual) enables multiple-generation experiments with large population sizes.

After identification of a QTV, one common use of experimental evolution in C. elegans is to test the role of selection in the
spread or loss of QTVs in a population [18,37,70,86,95,141,148,154-156]. Typically, two strains with homozygous geno-
types for alternate alleles compete against each other for multiple generations in specific environments. By measuring the
change in allele frequencies over the course of an experiment, the relative fitness of the two strains can be estimated. Such
experiments have been used to demonstrate that mutations that are fixed during laboratory growth increase the fitness of
reference strains in laboratory environments (Box 1).

These measurements can also be used to study the role that environment plays on fitness effects of QTVs. By comparing
the relative fithess of two strains in different environments, empirical evidence can support the role of selection in the
spread of alleles. For example, these experiments have been used to show that the increased use of anthelmintic drugs
are responsible for the spread of resistance alleles [70,154]. Similar experiments have provided evidence that balancing
selection could maintain different alleles that explain alternative foraging strategies induced by pheromones released by
conspecifics [86]. By modifying the distribution of food, a QTV could either be beneficial or detrimental, leading the authors
to propose that environmental heterogeneity in C. elegans natural environments creates balancing selection at this locus.
Interestingly, many regions of the C. elegans genome show signatures of balancing selection, suggesting many loci could
follow similar patterns [10].

Additionally, genetic manipulation can be used in these experiments to test specific evolutionary hypotheses. One elegant
example took advantage of genotypes with different outcrossing rates [157], exposing C. elegans strains to pathogens
that killed their hosts in a matter of days. Although the QTVs responsible for resistance to these pathogens were not iden-
tified, these and subsequent experiments [158,159] provided support that recombination between QTVs is important for
adaptation to novel conditions.

The combination of high-throughput sequencing with competition experiments, also known as evolve and resequence,
has been widely used in other species to identify regions of the genome with adaptive alleles. The use of evolve and
resequence has lagged in C. elegans, likely because of its partially selfing mating system, but recent work has spurred de-
velopment of this approach in Caenorhabditis nematodes (reviewed in [160,161]). Recently, a technique called ceX-QTL
was developed to map QTVs that affect fitness in specific conditions [73]. The ceX-QTL technique uses bulk selection
on millions of recombinant animals that compete against each other for multiple generations. QTVs that segregate be-
tween two strains of C. elegans and influence fitness in laboratory conditions were identified. This technique, and other
types of evolve and resequence approaches, will likely become more popular with C. elegans researchers in the future.

Numerous studies across several species suggest that genetic variation impacts gene expres-
sion [136,137]. However, it is often unclear how these gene expression differences translate to
trait variation. Again, C. elegans offers six examples (eak-3, exp-1, prg-1, scb-1, srx-43, and
tyra-3) in which noncoding variation is stated to be correlated with trait differences
[41,67,68,81,86,90,93]. Furthermore, several gene expression QTL (eQTL) studies have dis-
covered thousands of differentially expressed genes that are largely controlled by genetic factors
[24,51-56,58,59]. Colocalization of eQTL and organism-level QTL could suggest that a single ge-
netic variant underlies both [6,17,51,68]. Techniques such as mediation analysis can make sta-
tistical connections between genetic variation, variation in an intermediate trait such as gene
expression, and variation in complex organism-level phenotypes (Figure 2B). This technique
was successfully used to suggest that scb-17 affects responses to several chemotherapeutics
[68] and that sgst-5 affects differential responses to exogenous zinc [6]. The effects of both loci
were subsequently validated using genome editing. In addition to providing another resource
for candidate gene prioritization within a QTL interval (separate from evaluating protein-coding
variation), mediation analysis can help to identify the mechanism by which genetic variation
causes trait variation. This technique is especially powerful to establish candidate genes whose
expression is controlled by loci far from the regulated gene, as most fine-mapping techniques
only consider genes within the QTL confidence interval. In the case of tyra-3 and exp-1 [81,90],
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phenotypic differences could be explained by gene expression, but eQTL for neither gene are de-
tected, suggesting that whole-organism gene expression data might not always be sufficient to
identify expression differences at single-cell resolution [59]. To date, most eQTL datasets in C.
elegans have been generated from two-parent recombinant lines (specifically, N2xCB4856
recombinants). Therefore, a genome-wide analysis of gene expression in wild isolates or other
mpRILs could provide an unprecedented resource for studying the role of regulatory variation
in quantitative traits [58].

C. elegans mapping studies are just beginning to define the complexity of many quantitative traits
Although many early quantitative genetics studies in C. elegans identified mostly single, large-
effect loci [2,138], technological advancements coupled with the collection of more genetically
distinct wild isolates led to increases in the power to detect more QTL with ever smaller effects.
Many quantitative traits map to at least two independent loci and some traits have five or more
QTL. One large-scale QTL mapping study of nematode responses to 16 diverse toxins identified
82 QTL from 47 traits; a third of these traits mapped to two or more loci [69]. Strikingly, most of
these QTL had small effect sizes, explaining less than 10% of the phenotypic variation in the map-
ping panel. Several studies used NILs to validate small-effect loci, demonstrating that small ef-
fects can be studied in C. elegans with the right tools and a sensitive assay [66,69,32].

Current mapping populations and studies detect some of the loci underlying quantitative trait var-
iation, but we can use estimates of heritability to understand the levels of complexity for most
traits. The total fraction of trait variation explained by genetic variation in a population can be
estimated by calculating broad-sense heritability. \When compared with an estimate of
narrow-sense heritability, which accounts for all additive effects, the so-called missing herita-
bility can be estimated as the difference between the total genetic effect and the additive effects
[1]. One explanation for this discrepancy can be explained by nonadditive effects, including
epistasis. For C. elegans, only five studies have estimated both broad- and narrow-sense heri-
tability [15,39,69,74,76] and most trait variation is additive, as observed in yeast [139]. To more
broadly impact our understanding of quantitative trait variation, these estimates should be calcu-
lated for every quantitative trait mapping and the data organized in a central repository. In this
way, we can make more significant inferences about the loci underlying quantitative trait variation.
Central data repositories like WormQTL2' and CeNDR' can facilitate these analyses [111,116].

Genetic architectures of quantitative traits can be affected when a single gene underlies multiple trait
differences (pleiotropy [140]) and the varying contributions of genetic interactions among QTL
(epistasis). In C. elegans, we have evidence of pleiotropic QTGs in amx-2, mab-23, nath-10, nict-1,
npr-1, nurf-1, scb-1, and top-2 [17,18,37,41,48,50,51,68,75,93,141]. Many of these pleiotropic
genes affect life history traits or toxin responses. The gene scb-1, for example, underlies variation in
responses to amsacrine, bleomycin, carmustine, and cisplatin, demonstrating that a single gene
can affect sensitivities to multiple chemotherapeutics [67,68]. Effects of epistatic loci on phenotypic
variation are more difficult to define, as most of the QTL detected so far appear to be largely additive
[64,56,66,69,80]. Although this result is consistent with what is observed in many other species
[139,142-146], most mapping panels are underpowered to detect epistatic loci. Despite this obsta-
cle, several cases of epistasis have been reported in C. elegans [19,56,61,63,66,67,82,84,87,104].
Although the current tools available to the quantitative genetics community are still best suited to
identify single, large-effect QTVs [138], these examples of more complex architectures suggest that
we are beginning to fill in the gap in our understanding of quantitative trait variation. Additionally, as
the number of QTGs and QTVs grow, we can apply these results to investigations of the C. elegans
natural ecology and niche to understand better the roles and trade-offs that pleiotropy and epistasis
have on evolution of this species.
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Concluding remarks

Better tools and newer technologies have led to an increase in the number of QTL detected and
QTVs validated in C. elegans over the past decade. These discoveries have led to a better under-
standing of the molecular mechanisms underlying quantitative trait variation. Importantly, by syn-
thesizing a large, experimentally validated dataset of QTGs and QTVs, we can begin to learn more
about how traits can evolve in natural populations (see Outstanding questions). Although we can
gain significant insights from studying C. elegans, it remains to be investigated how and if these
conclusions can be applied more broadly to non-selfing species that lack the strong influence
of genetic drift and linkage disequilibrium caused by selfing. Furthermore, we need to learn
more about the ecological context of this species, so we can also learn to emulate the natural
conditions in the laboratory and test the effects of natural alleles empirically [125,147]. The appli-
cations of QTGs and QTVs to knowledge about its niche and direct sources of selection will be
critical to understand the tempo and mode of evolution at a mechanistic level. Regardless, in
the continuing quest to connect QTL to specific QTVs, the implementation of newer, more pow-
erful mapping methods like BSA and mpRILs will likely add to our current knowledge of the mo-
lecular mechanisms underlying quantitative trait variation.
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Outstanding questions

Can larger and more diverse cross
panels improve our understanding of
trait variation across natural populations?

What is the contribution of regulatory
variation to quantitative trait variation?

Will mapping intermediate phenotypic
traits (e.g., metabolites and gene
expression) in combination with tech-
niques such as mediation analysis
define more QTG and lead to specific
regulatory variant discovery?

How large is the role of epistasis in
quantitative trait variation and can
these results impact estimates of
missing heritability?

Are pleiotropic loci common and how
strongly do they influence evolutionary
processes?

What is the role of specific environments
(niches) and functional redundancy in
expanded gene families in the selection
of QTGs?

How can QTGs and QTVs be
combined with the ecological context
and niche to understand evolutionary
processes?

Do the evolutionary conclusions
inferred from C. elegans hold true for
other non-selfing species?
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